Impacts of climate change on marine fisheries

East Coast Climate Change and Fisheries Governance Workshop

March 2014

Washington, D. C.

Jon Hare NOAA Fisheries, Northeast Fisheries Science Center

Introduction

- Jon Hare, NOAA Fisheries
- Worked in Caribbean, Gulf of Mexico,
 Southeast U.S. and Northeast U.S.
- Currently oversee oceanography programs in Northeast
- Director, NOAA Narragansett Laboratory

Outline

- Climate Variability and Climate Change
- Past and Future Climate
 States
- Impacts on Fishery Resources
- Conclusions

Many examples are from Northeast

- Important difference "climate change" vs "climate variability"
- Climate variability natural variability within the climate system
- Climate change –
 long term change in
 the climate system

- Climate
 variability –
 natural
 variability
 within the
 climate system
- Climate change
 change in the climate system

- Interannual variability
- Atlantic
 Multidecadal
 Oscillation
- North Atlantic
 Oscillation

- Climate (Regional)
 variability;
 Southeast
 warming much
 less than in
 Northeast
- Climate change change in the climate system

- Scale of climate variability and change relatively large
- Consistent over 100s-1000s km
- Differences across
 Cape Hatteras
 boundary

Outline

- Climate Variability and Climate Change
- Past and Future Climate
 States
- Impacts on Fishery Resources
- Conclusions

 Past and current states are based on observations (many NMFS obs are now at risk of ending)

- Much of the information is from NEFSC Ecosystem Status Report and Ecosystem Advisories
- Ecosystem
 Assessment Program
 (NEFSC)

Northeast Fisheries Science Center Reference Document 12-07

Ecosystem Status Report for the Northeast Shelf Large Marine Ecosystem - 2011

 Future states simulated with models

http://serc.carleton.edu/eet/envisioningclimatechange/part 2.html

- Since 1960
- Warming in NE
- Constant in SE
- 2012 warmest on record in NE

http://www.seascapemodeling.org/cgi-bin/mt/mt-search.cgi?blog_id=2&tag=climate&limit=20

Climate projections – Surface Temperature

- Increase
 1.3°F in past
- Increase ~1 2°F in coming decades

Jamie Scott & Mike Alexander – NOAA OAR FSRL

http://www.esrl.noaa.gov/psd/ipcc/ocn/

- Ocean acidification is occurring
- Regional and seasonal variability

Climate projections – Ocean Acidification

- Decrease 0.036 pH units since 1980
- Decrease of
 ~0.08 pH units
 in coming
 decades

Jamie Scott & Mike Alexander – NOAA OAR ESRL

http://www.esrl.noaa.gov/psd/ipcc/ocn/

 Physical ecosystem is variable and changing over the long-term

- Salinity
- Ocean acidification
- Wind patterns
- Precipitation
- Streamflow
- Lake ice out
- Nutrients
- Sea level rise
- And more

Outline

- Climate Variability and Climate Change
- Past and Future
 Climate States
- Impacts on Fishery Resources
- Conclusions

Population – individuals of same species, living in the same geographical area, with capability of interbreeding

- 1. Abundance
- 2. Density
- 3. Dispersion
- 4. Distribution
- 5. Demographics (age, sex, etc)
- 6. Population Growth Rate (births, deaths)
- 7. Connectivity (immigration, emigration)

Stock - a group of individuals for which population parameters can be meaningfully estimated for specific management applications

- 1CAbendance
- 2. Sensity
- 3. Dispersion
- 4. Distribution
- 5. Demographics (age, sex, etc)
- 6. Population Growth Rate (births, deaths)
- 7. Connectivity (immigration emigration)

- Traditional stock
 assessments: only
 external factor
 affecting a stock
 (S) is fishing (F)
- Climate effects integrated in population properties (R, G, Ma, M)

$$S_{R,G,Ma,M} \approx f(\frac{1}{F})$$

As F increases, S decreases
As F decreases, S increases

- Traditional stock assessments:
 - climate effects integrated over hindcast
 - stationary over forecast
- Climate is random with no trend

$$S_{R,G,Ma,M} \approx f(\frac{1}{F}) + \varepsilon_C$$

- Traditional stock assessments:
 - climate affects internated over hindcast
 stationary over yoreast
- Climate is random with no trend

$$S_{R,G,Ma,M} \approx f(\frac{1}{F}) + g(C)$$

- Changes in stock productivity (R, G, Mat, Fec)
- Changes in distribution (stock definition; catchability)
- Changes in species interactions (natural mortality, growth)

- Changes in stock productivity
- Southern New England yellowtail
- Reduced R
 associated with
 cold pool or
 regime shift

- Changes in distribution
- Stock boundaries/ catchability
- 24 of 36 fish stocks shifted poleward / deeper (Nye et al. 2009)

http://www.int-res.com/abstracts/meps/v393/p111-129/ http://www.nefsc.noaa.gov/epd/ocean/MainPage/ioos.html

- Changes in trophic interactions
- Cod changing distribution as a result of shift in prey (not necessarily climate related but ...)

Richardson et al. in review. Can J Fish Aquat Sci

- Not only climate change; not only fishing
- Croaker biomass dependent on both fishing and climate

Fishing Mortality Rate

 Interactions between climate and fisheries

 Climate change and variability are not just future issues; past, present and future

Outline

- Climate Variability and Climate Change
- Past and Future
 Climate States
- Impacts on Fishery Resources
- Conclusions

- Reference points are not static
- Stock boundaries are not fixed
- Trophic interactions and community make-up are changing
- Multiple stressors (not all fishing, not all climate)

Steps forward:

- Coupled fisheries dynamic – climate models
- Coupled distribution climate models
- Vulnerability assessment
- Outreach

Quantitative

- Atlantic cod
- Atlantic croaker
- River herring
- Cusk
- Others

Qualitative

e.g., this talk

Northeast Fisheries Climate Vulnerability Assessment (79 species)

Sea surface temperature*

Air temperature*

Salinity*

Ocean acidification (pH)*

Precipitation*

Currents**

Sea level rise**

*modelled results (mean & variance)
**written description only

Habitat Specificity

Prey Specificity

Sensitivity to Ocean

Acidification

Sensitivity to Temperature

Stock Size/Status

Other Stressors

Adult Mobility

Spawning Cycle

Complexity in Reproductive

Strategy

Early Life History Survival

and Settlement

Requirements

Population Growth Rate

Dispersal of Early Life Stages

Northeast Fisheries Climate Vulnerability Assessment (79 species)

- Exposure to climate change of all species is moderately high to high
- Sensitivity higher for diadromous and shellfish; lower for groundfish and pelagics

